Welcome to ``MeDIL``'s documentation! ===================================== MeDIL is a Python package for causal factor analysis, using the measurement dependence inducing latent (MeDIL) causal model framework :cite:`Markham_2020_UAI`. The package is under active development---see the ``develop`` branch of the repository on `GitLab `_ or its `Github mirror `_. .. .. image:: https://gitlab.com/alex-markham/medil/badges/develop/coverage.svg :target: https://medil.causal.dev/htmlcov/ :Version: |version| :Date: |today| Installation: ------------- You can install the package from `PyPI `_ with the command ``pip install medil``. Features: --------- * `scikit-learn `_-style API * estimation of sparse causal factor structure and loadings in the linear Gaussian setting or more generally using a deep generative model :cite:`markham2023neuro` * :math:`\ell_0`-penalized maximum likelihood estimation (BIC score-based search) for minimum MeDIL causal graphs in the linear Gaussian setting, as well as nonparametric constraint-based search using `distance covariance `_ or `xi correlation `_ * random generation of and sampling from linear Gaussian causal factor models * exact search for minimum edge clique cover (ECC) :cite:`Gramm_2009` as well as polynomial time heuristic using the one-pure-child assumption :cite:`markham2023neuro` .. Design principles: ------------------ * basic functionality with minimal dependencies (just `SciPy `_) and optional dependencies (`PyTorch `_, `NetworkX `_, etc.) for more functionality Further documentation: ---------------------- .. toctree:: :maxdepth: 1 self tutorial theory citing references apilist license changelog Indices and tables ------------------ * :ref:`genindex` * :ref:`modindex`